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Abstract. We define stretching relative equilibria (RE) of silane and other similar tetrahedral molecules
in terms of the dynamical polyad symmetry which assumes the resonance condition 1:1 between the two
stretching vibrational modes ν1 and ν3 of the molecule. Exploiting symmetry and topology arguments
and reducing the dimension of the classical mechanical system, we find these RE. One of them, with local
symmetry C3v and minimal energy within a polyad, corresponds to the local modes. We give the upper
energy limit of the local mode localization within a polyad.

PACS. 33.15.Mt Rotation, vibration, and vibration-rotation constants – 33.20.Vq Vibration-rotation
analysis

1 Introduction

Molecular physicists and theoretical chemists call as lo-
cal mode a principal stable periodic molecular vibra-
tion which is localized primarily on a particular chemi-
cal bond. Local modes were used extensively to describe
certain vibrational states of nonlinear triatomic molecules
— the best known examples are H2O and O3 [1,2], and
molecules AB3 and AB4 with heavy central atom, such as
silane [3–7]. The bibliography on the subject is vast and
cannot be reviewed in this short paper.

The concept of local modes is closely related to exact or
approximate degeneracy of vibrational frequencies. If we
consider several linearly independent normal mode vibra-
tions with the same frequency, then in the limit of small
vibrations (also called the linearization limit, because in
this limit the vibrational Hamiltonian is harmonic and the
corresponding equations of motion are linear), local modes
reduce to specific linear combinations of degenerated nor-
mal modes. Such local modes correspond to specific peri-
odic trajectories, and usually they are called local when
the trajectory is stable. In this case, certain excited quan-
tum states are described more physically in terms of local
modes because they localize near these modes (and hence
near a particular chemical bond). The wavefunction nodes
of such states are arranged in a regular pattern with re-
spect to the configuration space image of the mode, and
the wavefunctions can be represented as combinations of a
few basis wavefunctions describing oscillations along and
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about the mode. The corresponding part of the classical
phase space can be represented as foliated by a continuous
family of Liouville tori which converge to the local mode
trajectory so that one of their principal cycles becomes
this trajectory while other cycles contract to a point. The
former cycle corresponds to the motion ‘along’ the mode,
while the other cycles describe oscillations about it.

When using local modes, we should, of course, spec-
ify what part of the vibrational energy spectrum can be
described more physically in such representation. In other
words, we should determine what part of the vibrational
states with roughly the same excitation is made up by
states localized near these modes. A clear answer to this
question has been given for triatomic molecules with two
resonant degrees of freedom [2,8–10]. Analysis becomes,
obviously, more difficult with growing number of degrees
of freedom. In this work, we give the answer for tetrahedral
molecules AB4 with four stretching degrees of freedom in
resonance and formulate the principles of the analysis of
even larger systems, such as bending–stretching polyads
of methane which involve nine degrees of freedom.

1.1 Nonlinear normal modes

A linearized oscillator system with k degrees of free-
dom has k normal modes. Recall that when frequencies
ω1: · · · :ωk equal nonzero integers m1: · · · :mk times a com-
mon factor ω, we say that modes 1, . . . , k are in resonance
m1: · · · :mk. In the absence of such resonance (see Fig. 1,
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Fig. 1. Energy of nonlinear normal modes of a two-mode sys-
tem without resonance (left), and in the case of exact (center)
and approximate (right) resonances. Families of stable and un-
stable modes are shown by solid and dashed lines respectively;
open circles mark bifurcations; grey shaded area represents lo-
cal mode states.

left), the k modes continue as k families of principal peri-
odic orbits when a typical perturbation is turned on [11].
These orbits are called nonlinear normal modes . In the
presence of an exact resonance (Fig. 1, center), the situ-
ation depends greatly on the particular resonance, sym-
metries of the system, and the nature of the perturba-
tion [12–14]. Using normal modes to classify all possible
dynamical regimes makes rarely sense in this case. In par-
ticular, the number of nonlinear modes can be larger than
k. Thus, for example, perturbing the double degenerate
mode (k = 2) of the molecular ion H+

3 , a molecular analog
of the Hénon-Heiles system, produces 8 nonlinear normal
modes of three different kinds [15] The modes with mini-
mal and maximal energy are stable, while the mode with
intermediate energy is unstable; the energy of the unsta-
ble mode separates the two types of states localized near
different stable modes. A triply degenerate (k = 3) vibra-
tion F2 of a tetrahedral molecule AB4 forms 27 nonlinear
normal modes while all 9 vibrational degrees of freedom
of AB4 form 63 such modes [12,13,16].

It follows that we can simplify the analysis by restrict-
ing the system only to the modes that are in resonance.
However, unless forced by the symmetry of the vibrations
involved, molecular resonances are typically not exact. In
the case of an approximate resonance (Fig. 1, right), both
dynamical regimes are present: for sufficiently small per-
turbations, resonances can be neglected, while at larger
perturbations they become important. Transition between
these regimes is marked by one or several bifurcations of
nonlinear normal modes.

To have a simple and a well-known example, recall
ozone [2]. All three modes of this molecule are nonde-
generate and its two stretching modes, symmetric ν1 and
antisymmetric ν3, are in a close 1:1 resonance. As the sys-
tem of these two modes enters the resonance regime, the
antisymmetric nonlinear normal mode, which is originally
stable, bifurcates, loses stability, and sends out two new
nonlinear modes which turn out to be the local modes. The
bifurcation is of the pitchfork type with broken symmetry
of order 2; the new modes are stable, have minimal energy,
and are symmetry–equivalent. Quantum states localized
near these modes, or ‘local mode states’, form doublets
and ascend to the threshold given by the energy of the
unstable asymmetric mode (see shaded area and dashed

line Fig. 1, right). Above this energy, we have states which
can be considered as excitations of the stable symmetric
nonlinear normal mode. Finally, it should be noticed, that
the ‘size’ of the nonresonant region in Figure 1, right, is
proportional to the detuning of the resonance. Thus in
many systems, including ozone and water, the resonance
is so strong that the transition occurs at energies below
the energy of the ground state.

In this work we show that the situation in silane is
very similar in principle. The frequency ratio of the totally
symmetric ‘breathing’ A1-type mode ν1 and the triply de-
generate F2-type mode ν3 is so close to 1:1 that we can ne-
glect the initial nonresonant regime of ‘uncoupled modes’.
In other words, the four local modes of silane split off
very early. Similarly to ozone, they have minimal energy.
Of course we should bear in mind the increased number of
degrees of freedom. We now deal with a four-dimensional
oscillator in 1:(1:1:1) resonance, where the three ν3 com-
ponents are in exact resonance. As a consequence, the
ν3 subsystem itself has several nonlinear normal modes
(see [16–19] and compare to Fig. 1, center) of different
stability and local symmetry. Furthermore, by the caprice
of notation, it is the ν1 mode of silane which loses stabil-
ity and serves as upper energy limit for the local mode
states, while certain stable nonlinear normal modes asso-
ciated with ν3 continue at higher energies.

1.2 Polyads and relative equilibria

Resonances of vibrational modes are at the origin of
polyads, or groups of quantum states with the same polyad
quantum number N = m1n1 + . . . mknk, where n1, . . . , nk

are numbers of quanta in each mode. For the 1:1 reso-
nance of ν1 and ν3 of silane, this number equals n1 + n3,
where n3 gives the total number of quanta in the triply
degenerate ν3 mode. Existence of polyads and of good
quantum number N corresponds to the existence of a well
conserved classical quantity N , i.e., an approximate inte-
gral of motion, which we call polyad integral and which
can be obtained from N by replacing ni for their classical
counterparts 1

2 (p2
i + q2

i ). Thus in the case of silane,

N = 1
2 (p2

0 + q2
0) + 1

2

3∑

i=1

(p2
i + q2

i ),

where we use plain indices 0 and (1, 2, 3) for the A1-mode
ν1 and for the three components of the F2-mode ν3, respec-
tively. Notice also that the value n of N and the quantum
polyad number N are related by the quantization rule; in
our case (i.e., for an isotropic 4-oscillator), n should be
quantized as N + 2.

The polyad approximation is very useful for analyzing
relatively small vibrations about stable equilibrium config-
urations of rigid polyatomic molecules. The Hamiltonian
flow of N defines a dynamical S

1 symmetry which can
be reduced. In the case of approximate resonances, such
reduction is preceded by normalization of the initial Ha-
miltonian H with respect to the flow of N . The resulting
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normalized Hamiltonian H, or the normal form, Poisson
commutes with N . Reduced Hamiltonian Hn is obtained
by replacing the conserved quantity N for its value n.
Hn and its quantum analog Ĥn are often called model
or polyad Hamiltonians. The quantum Hamiltonian Ĥn

describes internal level structure of polyads and is based
on a certain assumption of the resonance, i.e., a model.
If the molecule has modes other than the ones included
in the model, these modes are averaged out from H dur-
ing normalization and are represented effectively in Hn by
additional parameters. In such case Hn and Ĥn are also
called effective. Furthermore, when spectroscopists adjust
coefficients in front of the terms in Ĥn to reproduce their
experiments, Ĥn is called phenomenological.

Nonlinear normal modes and local modes as their
particular case, have a direct polyad representation. Re-
duced Hamiltonians Hn are defined as functions on re-
duced phase spaces Pn of dimension 2k − 2 (N represents
one universal polyad degree of freedom which is reduced).
Topology of Pn depends on the type of resonance and in
some cases — on n. Nonlinear normal modes correspond
to stationary points of Hn on Pn. When lifted back to the
original phase space R

2k they become periodic orbits of
the Hamiltonian flow of N , i.e., S

1 orbits of dynamical
symmetry. Such orbits are relative equilibria1 (RE) of the
system. So within the polyad approximation, nonlinear
normal modes are relative equilibria.

It follows that to find nonlinear normal modes within
the polyad approximation we should search for stationary
points of Hn on P 2k−2

n , a feasibly simpler task compared to
searching for periodic orbits in R

2k. Furthermore, we can
exploit symmetries of the system to find a set of isolated
fixed points of the symmetry group action on Pn which
is necessarily a subset of all stationary points of Hn. This
also provides a classification of RE by their local symmetry
which is given by the isotropy group or the stabilizer of
corresponding fixed points.

Reduced phase space Pn of a k-mode oscillator in
1: · · · :1 resonance has the topology of complex projec-
tive space CP k−1, which we will call for brevity a polyad
space2. Again the most studied and widely known is the
case of two modes in 1:1 resonance (see [2,15] for refer-
ences) where Pn has the topology of a smooth 2-sphere
S

2 isomorphic to CP 1. Such case benefited greatly from
its analogy to the reduced Euler top which was studied in
detail in relation to the description of the structure of ro-
tational multiplets of molecules. Three-oscillator systems
with reduced phase space CP 2 have also been studied suf-
ficiently fully in [2,22–24] and in particular for tetrahedral
molecules [16,17] with triply degenerate modes. However,
since the analysis on CP 2 is, necessarily, more involved
and applications are less universal, it remained known only
to specialists. Polyad dynamics in the presence of reso-

1 For an introduction to relative equilibria and definitions,
see Appendix 5C of [20] and Chapter 3.3 of [21].

2 In some cases, we will use n as an additional subscript to
CP k−1

n to denote a concrete reduced phase space Pn of topol-
ogy CP k−1 which represents the constant n level set of N .

nances involving k > 3 degrees of freedom has never been
truly investigated. In a few cases (for example methane
with k = 9, C2H2 with k = 7, and of course, silane with
k = 4), polyads corresponding to such resonances were
identified and respective effective polyad Hamiltonians
were used to reproduce observed vibrational energy levels.
However, the energy level structure was never related to
the underlying ‘skeleton’ of nonlinear normal modes. Fur-
thermore, it is now possible to derive classical and quan-
tum polyad approximations for these molecules directly
from their vibrational energy surfaces [25]. Though such
approximations are quite accurate in reproducing vibra-
tional (and even rotational) energy level structure, they
cannot, obviously, compete with fenomenological fits and
the natural use for them is predictions of highly excited
localised states using the techniques of our present work.
So from this point of view, this work is a considerable step
forward.

2 Decomposition of large polyad spaces
in terms of polyad subspaces

We now come to the principal idea of the present work.
Consider a k-oscillator in 1: · · · :1 resonance and the corre-
sponding polyad space2 Pn = CP k−1

n where n is the value
of the polyad integral N . Coordinates on Pn can be given
using complex Hamiltonian coordinates on C

k,

z = q − ip, z̄ = q + ip,

where z, q, and p are k-vectors. Notice that N = 1
2zz̄.

Points on Pn represent S
1 orbits z exp iφn with φn ∈

[0, 2π) and |z| =
√

2n.
We want to take full advantage of possible physically

meaningful subspaces of Pn. Thus in particular, we can
have several vibrational modes which transform accord-
ing to different irreducible representations of the symme-
try group G of the system. Since the action of G cannot
mix these modes, it is natural to retain their coordinates.
In other cases it may be important to continue distinguish-
ing specific groups of vibrations, for example bending and
stretching.

Consider now two subsystems of our system with k′
and k′′ modes each and respective polyad integrals N ′
and N ′′, such that k = k′ + k′′, N = N ′ + N ′′ and n =
n′ + n′′. Coordinates on the corresponding polyad spaces
Pn′ = CP k′−1 and Pn′′ = CP k′′−1 can be given using
coordinates z = (z′, z′′) on C

k′ ⊗ C
k′′

. In order to use
(z′, z′′) as coordinates on the whole of Pn we should relate
the absolute values |z′| and |z′′|. To this end we use a
mixing coordinate η ∈ [0, 1] such that

|z′| =
√

η
√

2n and |z′′| =
√

1 − η
√

2n.

Furthermore, we should also allow for different relative
phases of z′ and z′′ by introducing phase difference φ =
φn′ − φn′′ . So for some unit vectors ζ′ and ζ′′ in C

′ and
C

′′, all points on Pn can be represented using

z =
√

2n
(√

η ζ′,
√

1 − η exp(iφ) ζ′′
)
. (1)
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Table 1. Representatives of isolated fixed points of the Td×T group action on the ν3 polyad subspace CP 2 and on the rotational
sphere S

2, see [16]. For each type of point we give the class of conjugated subgroups of Td×T to which its stabilizer belongs,
and indicate in parentheses the number of equivalent points on CP 2 with stabilizer in the same class.

Stabilizer ζ1 ζ2 ζ3 j1 j2 j3

D2d × T (3) 1 0 0 1 0 0

C3v × T (4) 1/
√

3 1/
√

3 1/
√

3 1/
√

3 1/
√

3 1/
√

3

C2v × T (6) 1/
√

2 1/
√

2 0 1/
√

2 1/
√

2 0

S4 ∧ T2 (6) 1/
√

2 i/
√

2 0 0 0 1

C3 ∧ Ts (8) 1/
√

3 e2iπ/3/
√

3 eiπ/3/
√

3 1/
√

3 1/
√

3 1/
√

3

To understand better what goes on, one could consider
representing S

1 orbits z exp iφn in the initial phase space
C

k using their projections z′ exp iφn′ and z′′ exp iφn′′ in
C

k′
and C

k′′
, respectively. Notice also that (η, φ) is a vari-

ation on the theme of polar coordinates, so we should ex-
pect usual problems with φ at the ‘poles’ η = 0 and η = 1.

Applying (1) to the case of (ν1, ν3) polyads, let primes
and double primes in (1) refer to ν1 and ν3 respectively.
Then n′ = n1, the ν1 polyad subspace P ′ is just a point
and ζ′ ≡ 1, while n′′ = n3, the ν3 polyad subspace P ′′
is a CP 2 space and ζ′′ is a three component unit vector
(ζ1, ζ2, ζ3) in C

3. Notice also that η = 1 refers to pure ν1

mode — a single point on CP 3
n , while η = 0 refers to pure

ν3 mode, which is represented by a CP 2
n subspace of CP 3

n .

3 Polyad spaces and relative equilibria
of tetrahedral molecules

3.1 Isolated fixed spaces of the symmetry group action

The full symmetry group of our system Td×T is an ex-
tension of the spatial group Td by time reversal T . Action
of Td×T on the ν3 polyad subspace CP 2 is studied in full
detail in [16]. This action has five different kinds of iso-
lated fixed points listed in Table 1. Points of the same
kind are symmetry-equivalent, and their energy and sta-
bility are the same. So for our purpose, it suffices to have
one representative point of each kind.

We can now see the advantage of our coordinates (1)
on the (ν1, ν3) polyad space CP 3. Thus we can find im-
mediately different isolated fixed S

2 subspaces of CP 3
n by

simply reading ζ′′ = (ζ1, ζ2, ζ3) from Table 1. For exam-
ple, for points on one of these S

2 spheres with stabilizer
D2d × T we obtain

z =
√

2n
(
η

1
2 , (1 − η)

1
2 eiφ, 0, 0

)
.

Some remarks on the group action are due at this stage.
First we draw attention to the simple fact that the η = 1
point on CP 3 has the full Td×T as its stabilizer. This
isolated fixed point represents pure ν1. Next we recall that
the action of the Td group on the ν3 polyad space CP 2 is
equivalent to that of the O group because on this space
(z1, z2, z3) and (−z1,−z2,−z3) represent the same point
and we can extend our symmetry group by an additional
operation which mimics spatial inversion and acts trivially

on CP 2. However, on the full (ν1, ν3) polyad space CP 3,
where spatial inversion

(z0, z1, z2, z3) → (z0,−z1,−z2,−z3)

changes the relative phase φ → φ + π between ν1 repre-
sented by z0 and ν3 represented by (z1, z2, z3), such exten-
sion is no longer possible. This means that the Td group
is more fully represented on CP 3. As a consequence, the
action of the six reflection planes of Td is no longer the
same as that of the C2 axes and there is no fixed spaces
S

2 with stabilizer C2v × T for 1 > η > 0. Furthermore,
it can be also shown that action of stabilizers S4 ∧ T2 or
C3 ∧Ts on the respective points lifted to CP 3 using (1) is
not trivial: similar to that of inversion, it changes φ (by π

2
or π

3 respectively).

3.2 Relative equilibria

From our brief analysis of the group action, we conclude
that in the case of stabilizers C2v ×T , S4∧T2 and C3∧Ts,
we have isolated fixed ν3-points with η = 0. We also have a
fully symmetric fixed ν1-point with η = 1. All these points
are necessarily stationary points of any (ν1, ν3) polyad
Hamiltonian H and therefore they represent relative equi-
libria (RE).

More interestingly, mixing of the two modes is allowed
for stabilizers D2d×T and C3v×T . In these cases, station-
ary points of Hn are confined to the respective invariant
S

2 subspaces which we call coupling spheres . To find RE
with these stabilizers, we should study the restriction of
Hn(z) on these spheres. Such restriction HG

n (η, φ) or cou-
pling function is, of course, readily obtainable from equa-
tion (1) and Table 1 for each stabilizer G. Subsequently,
RE are found as stationary points of HG

n and are charac-
terized additionally by particular values of φ and η.

4 Effective (ν1, ν3) polyad Hamiltonian
and relative equilibria of silane

The effective Hamiltonian which describes the internal dy-
namics of the (ν1, ν3) polyads can be written to degree four
in (q, p) as follows

H = H0 + H11
2 + H33

2 + H13
2 ,
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Table 2. Model effective vibrational Hamiltonian for the (ν1, ν3) polyads of silane (28SiH4); parameters are taken from [29]
with minor corrections from [28]; notation is explained in footnote 3 on page 65, c.c. stands for the complex conjugate of the
preceding expression.

cm−1 Parameter Term Explicit classical expression

2186.87 ω1 N1
1
2
z0z̄0

2189.19 ω3 N3
1
2
(z1z̄1 + z2z̄2 + z3z̄3)

−33.3247 x0 H11:11 N1 N3

−34.50104 x1 H11:02
1
4
z0 (z1z̄2z̄3 + z̄1z2z̄3 + z̄1z̄2z3) + c.c.

32.9969 x2 H20:02 − 1
8
z2
0 (z̄2

2 + z̄2
3 + z̄2

1)/
√

3 + c.c.

−34.564 t1 H20:20
1
2
N 2

1

−34.6643 tA1
3 HA1A1

02:02
1
24

(z2
1 + z2

2 + z2
3)(z̄

2
2 + z̄2

3 + z̄2
1)

1.920 tE
3 HEE

02:02
1
24

(z2
1 z̄2

1 + z2
2 z̄2

2 + z2
3 z̄2

3 − z2
1 z̄2

2 − z2
1 z̄2

3 − z2
2 z̄2

3) + c.c.

−33.3584 tF2
3 HF2F2

02:02
1
4
(z1z̄1z2z̄2 + z2z̄2z3z̄3 + z1z̄1z3z̄3)

where

H0 = ω1N1 + ω3N3 = ω1N + (ω3 − ω1)N3,

and the quartic terms are

H13
2 = x0H11:11 + x1H11:02 + x2H20:02,

H11
2 = t1H20:20,

H33
2 = tA1

3 HA1A1
02:02 + tE3 HEE

02:02 + tF2
3 HF2F2

02:02 .

Further details3 and respective parameters for silane are
given in Table 2. Note that quantum counterparts of vi-
brational coordinates z and z̄ are

√
2a and

√
2a+ respec-

tively, where (a+, a) are vibrational creation-annihilation
operators.

The harmonic part H0 consists of two terms: polyad
integral N (z, z̄) with value n and detuning term N3(z, z̄).
We can see from Table 2 that in the case of silane, detun-
ing is of the order of 0.1% of the harmonic frequency and,
consequently, the two modes are in a very strong 1:1 reso-
nance. To respect the dynamical symmetry of the system
all vibrational operators should Poisson commute with N
and as a consequence, they are of equal degrees in z and
z̄. (In quantum mechanics this is equivalent to having the
same degree in a and a+ in order to preserve the polyad
number N .) The high-order terms describe the effects of
three kinds: the (ν1, ν3) interaction, the ν1 nonlinearity
and the ν3 nonlinearity. Construction of quartic terms in
Table 2 and notation are similar to that used in [26–28]
where more details can be found.

3 Notation HΓ ′Γ ′′
n′
1n′

3:n′′
1 n′′

3
follows the general notation in [26–

28]. It means that the particular term deletes n′′
i quanta and

then recreates n′
i quanta in mode i = 1, 3. Note that n′

1 +
n′

3 = n′′
1 +n′′

3 for the 1:1 polyad Hamiltonian. When necessary,
subscripts Γ ′ and Γ ′′ give the final irreducible representation of
Td according to which the respective creation and annihilation
factors transform; Γ ′ = Γ ′′ for purely vibrational terms.

4.1 Relative equilibria of silane

Using the quartic (ν1, ν3) Hamiltonian H with parameters
in Table 2 and the RE coordinates in (1) and Table 1 we
computed RE energies, i.e., the values of H for certain
fixed points of the Td×T group action on the polyad space
CP 3

n . Results are presented in Figure 3 and Table 3.
In particular we can see that the energy of the RE with

symmetry C3v × T and φ = π is at the minimum polyad
energy. This RE continues from the ν3 mode at n = 0 and
gradually increases the ν1 mode content as indicated by
the respective value of η in Table 3. Since, as illustrated
in Figure 2, most of the motion of the C3v ×T RE occurs
along one of the four Si–H bonds, this is what theoretical
chemists call local mode.

At the opposite energy end of the polyad spectrum,
we find the D2d × T RE which also continues from ν3

but without taking in any ν1 contribution (η remains 0).
The energy of the ν1 RE marks roughly the middle of the
polyad spectrum. Above this energy, we find several RE
of ν3 origin, and the quantum spectrum is very dense and
complicated. The structure below the ν1 energy is much
simpler: local modes exist in this energy range. Transition
to the strongly resonant regime with local modes happens
at very small n and cannot be seen in Figure 3. Mixing
of the ν1 and ν3 modes takes place only for a particular
pair of equivalent D2d ×T RE with φ = 0 or π and for all
C3v×T RE. Further details follow below after we compute
the stability of the key RE in this polyad structure.

5 Local approximation and stability
of relative equilibria

Local approximations near RE are vital for a more de-
tailed comparison to quantum energy level spectra. In the
case of the ν1, ν3 polyad with given value n of polyad in-
tegral N , the reduced phase space Pn = CP 3

n is of real
dimension six, i.e., locally Pn looks like R

6 ∼ C
3. Con-

sequently, a local approximation near a RE γ is given by
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Table 3. Relative equilibria of the (ν1, ν3) polyads of silane obtained for the Hamiltonian in Table 2. In the case of C3v × T ,
numerical values of η and energy are given for n = 10; analytic solutions are obtained in all other cases. Energy of the ν1 RE
(stabilizer Td×T ) is used as base energy E0(n) to plot all RE energies in Figure 3.

Stabilizer φ η (mode) Energy in units of ω1 = 2186.873 cm−1

Td×T 1 (ν1) n + 1
2
t1ω

−1
1 n2 = n − 0.00790264 n2

D2d × T 0 (ν3) 1.001059 n − 0.00234912 n2

0, π 0.70271 + 0.03866 n−1 1.000315 n − 0.00911330 n2 − 0.20 10−4

C3v × T 0 0.177957 9.6839656 for n = 10
0 0.928690 9.1900729 for n = 10
π 0.312896 8.4698469 for n = 10

C2v × T 0 (ν3) 1.001059 n − 0.00638215 n2

S4 ∧ T2 0 (ν3) 1.001059 n − 0.00359393 n2

C3 ∧ Ts 0 (ν3) 1.001059 n − 0.00493827 n2

Fig. 2. Representation of the vibrational potential in the ν3

mode configuration space R
3 with coordinates (q1, q2, q3) (left)

and configuration images of four C3v × T relative equilibria
(bold solid lines, right) for given polyad number n > 0 which
coincide with A–B bonds of tetrahedral molecule AB4, see [16]
for more details.

a three-mode oscillator Hamiltonian Hn,γ(z), normally a
Taylor series in z, defined on the C

3 space or chart with
coordinates z and usual Poisson structure

{zi, z̄i} = 2i δij , {zi, zi} = {z̄i, z̄i} = 0, i, j = 1, 2, 3.

Local complex Hamiltonian coordinates z describe small
displacements about the origin z = 0, which is the image
of γ in this chart. Furthermore, since γ is an equilibrium
(of the reduced system with polyad Hamiltonian Hn), the
lowest degree term H0

n,γ in Hn,γ(z) is quadratic. Using
H0

n,γ we can compute linearized equations of motion near
and about γ

(ż, ˙̄z)T = An,γ (z, z̄)T .

The eigenvalues λ of the 6 × 6 Hamiltonian matrix An,γ

characterize linear stability of γ (as function of dynamical
parameter n).

Notice that A is not necessarily diagonal and that a
linear symplectic transformation of (z, z̄) might be nec-
essary to obtain a diagonal representation. However, we
can simplify this discussion without any loss of general-
ity by assuming that A is already diagonal, i.e., that (z, z̄)
is its eigenbasis. Recall also that real and purely imag-
inary eigenvalues of Hamiltonian matrices come in pairs
±λ while complex eigenvalues form quartets (±λ,±λ̄) [30].

In the simple situation, when all λ lie on the imagi-
nary axis forming three pairs (λi, λ̄i), the linearized local

Hamiltonian can be written as

Eγ + H0
n,γ(z, z̄) = Eγ + 1

2

3∑

i=1

wi ziz̄i, where wi = iλ̄i.

If, additionally, the three real frequencies wi are of the
same sign, the respective RE γ is elliptic and stable.
For large ‖z‖, nonlinear terms in Hn,γ become impor-
tant and at certain energy hn,γ of oscillations about γ
we may have a barrier, above which the motion is no
longer bound. Provided that hn,γ is sufficiently large com-
pared to � maxi |wi| we should find quantum states local-
ized near RE γ at energies close to the classical energy Eγ .
The frequencies wi define spacings between the energies of
these states. Thus the state closest to γ has the energy4

of Eγ + 1
2�

∑
wi.

It is also important to notice that the ground state
of local three-oscillations about γ is itself nondegenerate.
However, the total degeneracy of this state is defined by
the number of symmetry-equivalent RE γ. Thus in the
case of stabilizer C3v×T (see Tab. 1) the total degeneracy
is four — the familiar four local modes [3,4,31,32]. We
also say that we have a vibrational 4-cluster . In the case
of D2d × T symmetry we should expect a 3-cluster.

The other simple case occurs when we have pairs ±λ
on the real axis. Then the RE γ is hyperbolic and unstable
and no quantum localization occurs near it. In all other
cases, we should consider nonlinear terms in Hn,γ(z) to
determine nonlinear stability of γ and describe the energy
level structure near Eγ .

Valuable additional information on the eigenvalues λ
can be obtained from the symmetry group (stabilizer) Gγ

of the relative equilibrium γ [16,17,24]. The local approxi-
mation Hamiltonian Hn,γ(z, z̄) is invariant with respect to
elements of Gγ and variables (z, z̄) span a six-dimensional
matrix representation Γz,z̄ of Gγ . If there is a nontrivial
subgroup SGγ ⊆ Gγ which acts diagonalwise with respect
to the complex structure of C

3 (and which is usually re-
lated to the initial spatial symmetry group of the system
— in our case Td) we can also consider a three-dimensional
representation Γz. We can construct Γz,z̄ and Γz by an ex-
plicit analysis of the action of Gγ and SGγ on (z, z̄) which

4 Later in this paper we imply the atomic units where � = 1.
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Fig. 3. Energy of relative
equilibria (solid lines, see also
Tab. 3) and (ν1, ν3) vibrational
energy levels (short bars) of
silane. Energy of the ν1 RE is
used as base energy E0(n) sub-
tracted from all RE energies;
classical action n and polyad
quantum number N are related
as n = N + 2. Dotted line shows
harmonic approximation for the
energy of the ground state local
mode 4-cluster.

derives from that of Td×T on the original vibrational dy-
namical variables (z, z̄) [16,17,24].

Certain general observations can be made even with-
out such detailed analysis. Thus we can see from Table 1
that possible stabilizers Gγ have only irreducible represen-
tations of dimension 1 or 2, and Gγ = C2v × T has only
irreducible representations of dimension 1. This restricts
possible ways in which Γz and Γz,z̄ reduce.

In particular, we will encounter the stable RE with
stabilizer C3v × T , or the local mode RE. In this case,
it can be easily shown5 that Γz reduces into a sum A ⊕
E of irreducible representations A and E of respective
dimensions 1 and 2, and two of the three local frequencies
are necessarily the same (degenerate). This means that the
local approximation for C3v×T is a stable three-oscillator
with one double degenerated mode. The first excited state
of this system consists of a single level at frequency w1 and
of a doublet at frequency w2 = w3. The total degeneracy
of such vibrational state is 4× (1 + 2) = 12, or a 4-cluster
and a 8-cluster with larger ν3 presence.

5.1 Computing stability of relative equilibria
of the ν1, ν3 polyads

We now obtain local approximations near the RE of the
ν1, ν3 polyads and compute stability of these RE. Our
technique is quite general, but for simplicity, we consider

5 Align coordinate axis q3 with axis C3, then components
(q1, q2) of the F2 mode ν3 will span the irreducible representa-
tion E of C3v, while A will be spanned by q3.

only two-block resonances with the concrete application
to the ν1, ν3 polyads in mind. Let

z0 = (z0
0 , z0

1 , z0
2 , z

0
3) =

√
2n

(√
η,

√
1−η eiφζ0

)
,

with ζ0 = (ζ0
1 , ζ0

2 , ζ0
3 ) a unit vector in Table 1, be a point

on a periodic orbit γ of the flow of the Hamiltonian vector
field Xn in C

4 ∼ R
8
q,p which represents a relative equilib-

rium (RE) of our system. Recall that all points of γ (and
z0 in particular) map to one point on the reduced polyad
phase space CP 3

n and we can use z0 to represent γ on CP 3
n .

Now let z = z0 + z with small ‖z‖ �
√

2n describe points
which lie on CP 3

n near z0. To describe small oscillations
about γ we exploit the definition of the projective space
CP 3. In addition we assume that η �= 0 and we notice that
in this case, according to our choice of z0

Re z0 = Re(z0
0 + z0) =

√
2n η + Re z0,

Im z0 = Im(z0
0 + z0) = Im z0.

In order to define a C
3 chart of CP 3 with origin in z0, we

can impose the following conditions on z0 = z0
0 + z0

Re z0 =

√√√√2n −
3∑

i=1

ziz̄i =

√√√√2n−
3∑

i=1

‖z0
i + zi‖2, (2a)

Im z0 = 0. (2b)

In this local chart, to derive the local expression
for energy from the normalized polyad Hamiltonian
Hn(z0, z1, z2, z3), we replace z0 by its restricted value
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Table 4. Linear stability of some (ν1, ν3) relative equilibria of silane for n = 10 (quantum polyad 8, see Fig. 3), brackets [λ]
mark double degenerate eigenvalues, the value of n at which certain RE appear or change stability is indicated as ncrit.

Stabilizer φ η (mode) ncrit Eigenvalues in units of ω1

D2d × T 0 (ν3) 0.0612i, [0.0896i]
C3v × T 0 0.1779 0.071 0.0714i, [0.0448i]
S4 ∧ T2 0 (ν3) 1.301 0.0745, 0.0195i, 0.0183i
C3 ∧ Ts 0 (ν3) 0.1108i, 0.0753 ± 0.0354i
C2v × T 0 (ν3) 0.1341i, 0.0120 ± 0.1187i
Td×T 1 (ν1) 0.130 0.9255, [0.9497i]

C3v × T 0 0.9287 ∼ 0.13 0.1072i, [0.1005]
D2d × T 0, π 0.7066 0.130 0.0981, 0.1741i, 0.1407i
C3v × T π 0.3129 0.2888i, [0.3134i]

in (2) and represent other coordinates zi with i = 1, 2, 3 as
z0

i + zi. We then Taylor expand Hn in variables (z1, z2, z3)
and obtain local approximation Hn,γ(z) near z0.

In principle, our local chart should work as long as
η �= 0 and therefore z0

0 �= 0. The devil is, of course, hidden
in the Taylor series expansion of the square root in (2).
Indeed, if z0

0 = 0 then ‖(z0
1 , z

0
2 , z

0
3)‖ = z0

1 z̄0
1 +z0

2 z̄
0
2 +z0

3 z̄
0
3 =

2n and our series simply blows up. In general, this series
will be well converging only if η ≈ 1, so that ‖(z1, z2, z3)‖
remains small and the value under the square root for
(z1, z2, z3) = 0 is far from 0. If that is not the case, we
need to look for an alternative more appropriate chart,
where instead of z0, the role of the eliminated coordinate
is played by one of (z1, z2, z3) or by their combination. For
example, for D2d ×T RE (see Tab. 1) with η = 0 we must
eliminate z1.

Variables (z1, z2, z3) and (z1, z2, z3) inherit the original
symplectic structure of C

4 ∼ R
8. They can be, therefore,

used immediately to write equations of motion in the chart
C

3 and to find the matrix An,γ of their linearization and
its eigenvalues λ. At the same time, for each type of RE
γ we can find the action of the stabilizer Gγ ⊆ Td×T
on (z1, z2, z3) from the action of Td×T on (z1, z2, z3) and
(z0

1 , z0
2 , z

0
3). Note that z0 = (z0

0 , z0
1 , z0

2 , z
0
3) is a fixed point

of the Gγ action on (z0, z1, z2, z3) and therefore the ori-
gin 0 of the C

3(z0) chart is a fixed point of the Gγ on
z. Furthermore, for the local chart under consideration
(z1, z2, z3) transform as mode ν3.

5.2 Stability of relative equilibria of ν1, ν3 polyads
of silane

Results of our computations for the concrete polyad
Hamiltonian of silane in Table 2 are given in Table 4.
Three general observations are due here. First, as ex-
pected, transition to the strongly resonant vibrational
regime occurs in silane very early at n ≈ 0.13 and way
below the value of n = 2 for the quantum ground state.
This makes a detailed study of bifurcations involved in this
transition purely academic as none of these phenomena
have any chance to be observed in this particular molecu-
lar system. Second, local harmonic frequencies w1 and w2

of oscillations about the stable “local mode” RE C3v ×T ,
φ = π are in a very good agreement with quantum data

Table 5. Energies in cm−1 of quantum states localized near
the C3v × T , φ = π RE of silane, known as local mode, for
the N = 8 (n = 10) polyad. Energies are computed for the
polyad Hamiltonian in Table 2 using STDS [26–28] and are
given relative to the base energy E0 = 20140 cm−1 of the ν1

RE. Individual states are characterized additionally by their Td

symmetry type; states of type A, E, and F have degeneracy 1,
2, and 3 respectively.

Energy type Comments

0 ν1 RE
−43 RE C3v × T , φ = 0, η = 0.93
−286.42 F1 8-cluster, n′′ = 1
−286.47 F2 splitting ∆E = 43, cf. w2 − w1 = 54
−286.49 E
−329.46 F2 4-cluster, n′ = 1
−329.81 A1

−617 classical 1
2
w1 + w2

−765.93 A1 + F2 ground 4-cluster

−1618 local mode RE C3v × T , φ = π

(see Tab. 5). Third, it is quite interesting to see on our
concrete example what other types of stability can exist
in such systems. So we comment on them very briefly.

The passage to the resonant regime (cf. Fig. 1, right)
can be attributed to ncrit = 0.130 when the totally sym-
metric “normal mode” RE ν1 undergoes a pitchfork bi-
furcation and becomes hyperbolic in one direction. For
n = 10 this RE has by far the largest absolute values of
the respective eigenvalues: one direction is strongly hyper-
bolic while oscillations about it in the two other directions
are strongly elliptic and have degenerate frequencies. The
two RE created in the bifurcation at ncrit = 0.130 have
symmetry D2d × T and φ = 0, π. These RE are also un-
stable in one direction.

Comparing this description to Figure 1, note one im-
portant difference: in the (ν1, ν3) case, the local mode
RE (C3v × T , φ = π) does not bifurcate from a nor-
mal mode, but continues directly from a pure ν3 RE at
n = 0. The eigenvalues λ for this nonlinear mode are sec-
ond largest by their absolute value. The mode is stable
and two oscillations about it have degenerate frequency
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w2 = ω1λ2/i = 685.3 cm−1 for n = 10, while the third lo-
cal frequency is lower, w1 = 631.5 cm−1 for n = 10. Using
these frequencies, we can estimate the position of the first
localized state near this RE at 1

2w1(n) + w2(n) above the
classical RE energy. For n = 10 this gives 1001 cm−1, or
about a third of the whole (ν1, ν3) polyad structure (see
Fig. 3).

As we can see from Table 5, this agrees very well
with the quantum spectrum which indeed exhibits a large
gap between the classical energy minimum and the lowest
quantum state, the familiar local mode 4-cluster. Since the
above estimate of the gap is obtained in the harmonic ap-
proximation, it is slightly higher and the difference gives
the idea of the influence of the nonlinear terms in the local
approximation. Thus for n = 10 the 4-cluster is made of
A1 + F2 states lying 765.93 cm−1 below the ν1 RE energy
and 852.1 cm−1 above the energy of the classical RE.

Analysis of the lower part of the (ν1, ν3) polyad is rela-
tively straightforward. Comparison of the quantum spec-
trum in Figure 3 and Table 5 to classical RE energies
suggests strongly that it is the unstable ν1 RE (with en-
ergy E0) which serves as an escape route from the local
mode potential well. As shown in Figure 3, local harmonic
frequencies w1 and w2 give qualitatively correct upper es-
timate of the ground 4-cluster energy. Thus for n = 10
(Tab. 5) we obtain 1

2w1 + w2 = 1001 cm−1, which is
150 cm−1 above the actual energy of the cluster. Starting
from n = 8, the depth of the well (1618 cm−1 for n = 10)
is large enough to accommodate the first excited localized
state composed of a 4-cluster and a 8-cluster, which lie
w1 and w2 cm−1 above the ground localized state respec-
tively. The splitting between these two components is also
well estimated from above by w2 − w1, see Table 5. The
discrepancy of 15–20% can be most certainly explained by
considerable anharmonicities of the local mode potential
well.

The upper part of the polyad spectrum in Figure 3
looks more complicated. At the maximum energy we find
the stable D2d ×T RE of purely ν3 origin with single and
double local frequencies w1 = 134 and w2 = 196 cm−1

respectively for n = 10. So we can expect to find the cor-
responding localized state — a 3-cluster, some 263 cm−1

below. Indeed, the quantum spectrum begins about this
energy and its topmost state is a 3-cluster whose compo-
sition alternates between E + A and F depending on N .
The localization pattern for this state can be predicted by
comparing to the D2d × T nonlinear normal mode in the
pure ν3 case in ([16], Fig. 16 on p. 306). It can be seen
that this RE is essentially the F2 normal mode. So we en-
counter the general pattern (cf. Fig. 1) with a local mode
RE and a normal mode RE at the opposite ends of the
polyad energy spectrum.

The situation becomes increasingly more complicated
at immediately lower energies due to the presence of an-
other linearly stable RE with symmetry C3v × T , φ = 0
and small η, i.e., with small ν1 content. Note that this RE
is created in the saddle-node bifurcation on the C3v × T
invariant coupling space S

2 at n ≈ 0.071. Immediately
below in energy we find the hyperbolic pure ν3 RE with

symmetry S4∧T2. It is unclear whether the latter serves as
a barrier to either of the two stable RE above it. However,
the two complex unstable RE at lower energies C3∧Ts and
C2v×T most certainly put an end to any localization. The
presence of complex unstable RE indicates a very interest-
ing polyad dynamics. Due to their existence, this (ν1, ν3)
system should have monodromy6 and as a consequence, it
cannot be described using a single set of global quantum
numbers.

6 Rotational structure

Extension of the present analysis to rotation-vibration fol-
lows [16,18] and is relatively straightforward. The full
rotation-vibration system has extra degrees of freedom
and an additional first integral J , the amplitude of the
total angular momentum J = (J1, J2, J3), with value
j. The respective reduced system has the phase space
CP 3

n × S
2
j , which is a direct product of the vibrational

polyad space and the rotational sphere, respectively. Com-
ponents (J1, J2, J3) restricted by ‖J‖ = j2 serve as coor-
dinates on S

2
j .

Terms in the reduced rotation-vibration Hamiltonians
for tetrahedral molecules are standardized in [26–28]. Like
for any F2-type mode (see [16,18,19] for details), we have
several terms, starting with the linear-in-J Coriolis inter-
action T

1(1,F1)
33 , which mix different ν3 components. We

note only that due to the large mass of the central atom
the t

1(1,F1)
33 constant of silane is small compared to purely

vibrational splittings and that the J2 terms with constants
t
2(0,A1)
33 , t

2(2,E)
33 , and t

2(2,F2)
33 become important at rela-

tively low j. This results in a very dense rotational multi-
plet without the ‘usual’ well separated ‘Coriolis branches’
(cf. [18,19]). Furthermore, many of the RE of interest to
us, and in particular the local mode RE, have zero vibra-
tional angular momentum. Such RE do not have energy
contributions from T

1(1,F1)
33 (they belong to the Coriolis

Q-branch [16,18]) and therefore, they do not have linear-
in-J energy corrections. Rotational corrections to the ν1

mode energy are similar to the well-known purely rota-
tional terms, whose discussion in terms of rotational RE
can be found, for example, in [16,18,38]. We like to men-
tion the principal (ν1, ν3) rotational coupling term

T
2(2,F2)
13 =

√
2

3
(
(z0z̄1 + z̄0z1)J2J3 + (z0z̄2 + z̄0z2)J1J3

+ (z0z̄3 + z̄0z3)J1J2

)
,

which is specific to our (ν1, ν3) system.
The study of the role of rotation can be done within the

same framework. Reduced rotation-vibration Hamiltonian

6 Hamiltonian monodromy was introduced in [33]; it was
largely due to Cushman [34] that molecular physicists became
acquainted with this interesting phenomenon. A brief survey
of molecular examples can be found in [35]; for more recent
developments see [36,37].
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Table 6. Rotational contributions to certain coupling func-
tions for the (ν1, ν3) polyads; the last row gives the part of
rotational contribution which is common to all coupling func-
tions.

Stabilizer Rotational contribution

D2d × T −4

3
t
2(2,E)
33 (1 − η) nj2 +

16
√

2√
15

t4(4,A1)j4

C3v × T −4
√

2

3
√

3
t
2(2,F2)
13 cos φ

√
η(1 − η) nj2

− 8

9
t
2(2,F2)
33 (1 − η)nj2 − 32

√
2

3
√

15
t4(4,A1)j4

common t2(0,A1)j2 +
(
t
2(0,A1)
11 η + t

2(0,A1)
33 (1 − η)

)
nj2

+ t4(0,A1)j4

Hn,j(z, z̄,J) is a function on CP 3
n × S

2
j where its equilib-

rium points represent rotation-vibration RE. To find one
such RE γ with stabilizer Gγ , we restrict Hn,j using re-
spective fixed points (z,J) in Table 1 with J = j(j1, j2, j3).
This gives a coupling function HGγ

n,j(η, φ) which, compared
to the one we had previously, has the additional parame-
ter j. Examples are given in Table 6. Notice that for all
stabilizers in Table 1, rotational coordinates are fixed com-
pletely by symmetry, and that HGγ

n,j(η, φ) is, as before, a
function on the coupling sphere S

2. At the same time, the
number of equivalent RE increases as we should account
for two different possible rotation directions inverted by
the T operation.

To describe rotation-vibration RE, we study the sta-
tionary points of HGγ

n,j(η, φ) as functions of two param-
eters (n, j). Such analysis is beyond the scope of our
present discussion. We point out, however, that HG

n,j with
G = C3v × T is the only coupling function that gets
a contribution from the rotation-vibration coupling term
T

2(2,F2)
13 . This makes analysis of the influence of rotation

on the RE with stabilizer C3v×T and 0 < η < 1, including
the local mode RE, particularly interesting.

7 Conclusions

Our present analysis complements greatly the earlier work
on local modes (see for example [3–7] and others) in two
important aspects. First, we present local modes within
the global polyad framework where a local mode is a par-
ticular stable nonlinear normal mode (or, equivalently,
RE). This relates local modes most directly to the gen-
eral approach of describing “rigid” polyatomic molecules
in the limit of small (and not-so-small) vibrations [39–41],
such as the STDS formalism [26–28] developed for tetra-
hedral molecules AB4, as well as to other local mode and
polyad studies. Second, we also provide precise limits of
the existence of quantum states localized near the local
mode RE of silane, and show what part of the total vibra-
tional polyad spectrum these states occupy.

Despite the obvious difficulty of extending polyad stud-
ies to systems with large number of internal polyad degrees

of freedom, we succeeded in finding a number of impor-
tant RE and relating them to the quantum spectrum. It
is clear, however, that for any comprehensive study of the
(ν1, ν3) system, our work provides just a good starting
point. The main remaining problem is the global dynami-
cal analysis on the polyad space Pn = CP 3

n , i.e., the study
of dynamical connections between the different RE we
found. Thus, for example, it remains to prove, that the ν1

RE and not the two unstable RE with energies below that
of ν1 is the escape route from the local mode potential well.
Such a task is, in a sense, similar to theoretical chemistry
studies of a reaction path on a multidimensional potential
surface, albeit here we deal with multidimensional Hamil-
tonian dynamics on a curved multidimensional space.

The other way to formulate the problem, is to notice
that we lack additional characteristics of internal polyad
dynamics: the number of internal polyad degrees of free-
dom has risen, but the number of characteristics avail-
able globally is the same — energy and the value n of the
polyad integral (polyad number N). Indeed, in the absence
of any additional Lie symmetries, our reduced system on
Pn is not integrable. In general, we can only attempt to in-
troduce local first integrals for local approximations near
RE and use appropriate techniques to assign additional lo-
cal labels to quantum wavefunctions. Connecting between
different local approximations brings us back to the above
formulated problem of global analysis.

From this point of view, we were somewhat “lucky”
that the sequence of local mode clusters between the ν1

RE and the C3v × T , φ = π RE was not obscured by any
other sequences of quantum levels and could be analyzed
easily without any additional first integrals, respective lo-
cal quantum numbers and techniques of their assignment.
The upper part of the (ν1, ν3) polyads of silane cannot be
analyzed that easily. Looking at the dense and seemingly
incomprehensible quantum spectrum above the ν1 RE en-
ergy, one should, however, be cautious about writing off
any further analysis in this part in terms of regular dy-
namics. We can be dealing with several systems of states
which overlap in energy but which are localized in different
regions of the phase space Pn, and thus described by dif-
ferent local quantum numbers. In this regard, particularly
interesting is a local study near each of the two complex
unstable RE which may uncover two different subsystems
of quantum states with monodromy.

Notice also that our RE analysis itself is quite basic
and unfinished. We only found RE which are defined (al-
most entirely) by symmetry, while other RE situated on
higher dimensional noncritical strata of the group action
may exist. Studying bifurcations (many at low n) of the
known RE and using global topological arguments of the
Morse theory may help finding them. Such study is beyond
both the purpose and the volume of our present work.

8 Perspectives

Any serious spectroscopic application requires a complete
rotation-vibration analysis. In the particular system, the
interesting question to answer is whether rotation affects
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qualitatively the existence and stability of the C3v × T
RE, and of the local mode RE in particular. The ques-
tion whether localization near a RE is of ‘rotational’ or
‘vibrational’ origin can be answered by studying j and n
contributions to the coupling function. Thus, if new RE
appear at large j, we can associate them with rotation.

Another important direction is local rotation-vibration
Hamiltonians near stable RE. For the local mode min-
imum, such a Hamiltonian was used in [3–7,32,42]. As
can be expected, it represents a non-rigid symmetric top
and inherits the C3v ×T symmetry of the RE. In general,
local Hamiltonians can be readily constructed using the
methods we developed here for the stability analysis, and
their parameters can be related to those of the full polyad
Hamiltonian Hn,j . We can subsequently use a local Hamil-
tonian to analyze the fine structure of rotation-vibration
bands which involve only a group of states localized near
a particular RE. In some cases, we can make further ad-
justments of its parameters, which make a small subset of
all parameters of Hn,j , in order to reproduce these bands
more finely.

The interest in transitions to localized states is ob-
vious: in the sea of irregular quantum states, which we
are bound to encounter at high excitations, they provide
regular and easily recognizable spectra. This brings us to
the problem of describing intensities of such transitions.
Again, we can do this by expanding the polyad transi-
tion moment near the RE of interest using the techniques
in this paper. In this way we can ascribe ‘transition mo-
ments’ µγ(n) to each RE γ, i.e., to each nonlinear normal
mode, and find respective ‘oscillator strengths’ fγ(n′, n′′).

Our technique can be used in many systems with mul-
tiple resonances. Among them, methane (CH4), a basic
molecule and an important ingredient of terrestrial and
planetary atmospheres, can be considered as an ultimate
goal. Methane has huge and complex polyads with no vis-
ible ‘local modes’. At the same time, observations of tran-
sitions with large n′ − n′′ show intriguing intense regular
structures which may indicate the presence of very sta-
ble RE and respective localized states. Analysis of such
transitions on the basis of traditional well developed spec-
troscopic techniques [26–28] runs into obvious difficulties
due to enormous numbers of individual excited quantum
states. In this situation, uncovering localized states first
becomes a necessity and using our approach — the most
promising way forward.
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Mol. Spectrosc. 201, 95 (2000)
20. Vl.I. Arnol’d, Matemati 
cheskie Metody Klassi 
cheskóı
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